miércoles, 15 de mayo de 2013

¿QUÉ ES?


La Teoría Nuclear consiste prácticamente en cúmulo de teorías y estudios que intenta explicar cómo es la estructura más básica y pequeña de la materia. A lo largo de la historia se ha intentado dar explicación a estos interrogantes y eso por eso que este campo de estudio ha sido uno de los percusores de la ciencia

Hay dos procesos nucleares que tienen gran importancia práctica porque proporcionan cantidades enormes de energía: la fisión nuclear -la escisión de un núcleo pesado en núcleos más ligeros- y la fusión termonuclear -la unión de dos núcleos ligeros (a temperaturas extremadamente altas) para formar un núcleo más pesado. 

En 1905 Albert Einstein desarrollo de la ecuación que relaciona la masa y la energía, E = mc² como parte de su teoría de la relatividad especial. Dicha ecuación afirma que una masa determinada (m) esta asociada con una cantidad de energía (E) igual a la masa multiplicada por el cuadrado de la velocidad de la luz (c). Una cantidad muy pequeña de masa equivale a una cantidad enorme de energía.

LA RADIACTIVIDAD


La radiactividad es una propiedad de ciertos elementos químicos cuyos núcleos atómicos son inestables: con el tiempo, para cada núcleo llega un momento en que alcanza su estabilidad al producirse un cambio interno, llamado desintegración radiactiva, que implica un desprendimiento de energía conocido de forma general como "radiación". La energía que interviene es muy grande si se compara con la desprendida en las reacciones químicas en que pueden intervenir las mismas cantidades de materiales, y el mecanismo por el cual se libera esta energía es totalmente diferente.

Los Descubridores

Antoine Henri Becquerel




Antoine Henri, hijo y nieto de dos científicos notables, nació en París en 1852; estudió en la Escuela Politécnica, donde después fue profesor.
En París, en 1896, Becquerel descubrió accidentalmente la existencia de unos rayos desconocidos que provenían de una sal de uranio. Notó que al poner en contacto el compuesto de uranio con una placa fotográfica envuelta en papel negro, se producía el mismo efecto que si la placa estuviera en presencia de los rayos X. Le pareció sorprendente que de las sales de uranio emanaran radiaciones que afectaban las placas fotográficas cuando éstas se encontraban protegidas de la luz. 
Becquerel pronto se dio cuenta de que las radiaciones provenientes del compuesto de uranio no eran originadas por una reacción química, y que al aumentar la concentración del uranio en el compuesto químico se velaba más rápidamente la placa fotográfica que cuando la sal tenía menos uranio.
Cuando Becquerel publicó los resultados de sus investigaciones sobre los rayos provenientes del uranio, los esposos Pierre y Marie Curie, sus amigos, se interesaron mucho en este fenómeno tan misterioso.

Pierre y Madame Curie






Pierre Curie nació en París, Francia, en 1859. La educación que recibió produjo sus frutos: fue bachiller a los 16 años, licenciado en física a los 18 y a los 19 ayudante de laboratorio del profesor Desains en la Universidad de la Sorbona en París.
Posteriormente, dejó la Sorbona para trabajar como jefe de laboratorio en la Escuela de Física y Química de la ciudad de París. Allí continuó sus investigaciones, de gran importancia; entre otras cosas, descubrió lo que ahora se conoce como la ley de Curie sobre el magnetismo.
Pierre Curie conoció en París a Manya Sklodowska, quien en ese entonces estudiaba en la Sorbona, y poco tiempo después sería conocida en todo el mundo como Madame Marie Curie. 
Manya Sklodowska nació en un antiguo barrio de Varsovia, Polonia, en 1867. Se trasladó a París para ingresar en la Facultad de Ciencias de la Universidad de la Sorbona. Con muchas privaciones obtuvo su licenciatura en ciencias físicas y un año después en ciencias matemáticas. Fue en ese tiempo cuando Pierre Curie y ella se conocieron, y en el verano de 1895 contrajeron matrimonio.
Madame Curie junto a su esposo Pierre Curie, empezaron a estudiar el raro fenómeno que había descubierto Becquerel. Estudiaron diversos minerales y se dieron cuenta de que otra sustancia el torio, era "radiactiva", término de su invención. Demostraron que la radiactividad no era resultado de una reacción química, sino una propiedad elemental del átomo. En 1898 descubren dos nuevas sustancias radiactivas: el radio y el polonio, mucho más activas que el uranio. Pierre estudiaba las propiedades de la radiación, y Marie intentaba obtener de los minerales las sustancias radiactivas con el mayor grado de pureza posible.
 En 1903 recibieron el premio Nobel de física junto con Becquerel por el descubrimiento de la radiactividad natural.
Al poco tiempo murió Pierre Curie en un accidente. Madame Curie siguió trabajando y fue la primera mujer que ocupó un puesto en la Universidad de la Sorbona en Paris. Siguió investigando junto a Ernest Rutherford, quien encontró que la radiación que emitían las sustancias radiactivas, tenía tres componentes que denominó: alfa, beta y gamma.
Madame Curie siguió estudiando el fenómeno de la radiactividad durante toda su vida, prestando especial atención a las aplicaciones médicas de la radiactividad junto con los rayos X, recién descubiertos. Madame Curie murió a los 60 años de leucemia en 1934. Su hija Irene continuó su trabajo con la misma pasión junto a su marido, con el que descubrió la radiactividad artificial y por lo que recibieron el premio Nobel.

Clases y componentes de la radiación.







Partícula alfa: Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio). Son desviadas por campos eléctricos y magnéticos. Son poco penetrantes, aunque muy ionizantes. Son muy energéticas. Fueron descubiertas por Rutherford. Este tipo de radiación la emiten núcleos de elementos pesados situados al final de la tabla periódica (A >100). Estos núcleos tienen muchos protones y la repulsión eléctrica es muy fuerte, por lo que tienden a obtener N aproximadamente igual a Z, y para ello se emite una partícula alfa. En el proceso se desprende mucha energía, que se convierte en la energía cinética de la partícula alfa, por lo que estas partículas salen con velocidades muy altas.
Desintegración beta: Son flujos de electrones (beta negativas) o positrones (beta positivas) resultantes de la desintegración de los neutrones o protones del núcleo cuando éste se encuentra en un estado excitado. Es desviada por campos magnéticos. Es más penetrante, aunque su poder de ionización no es tan elevado como el de las partículas alfa.
 Radiación gamma: Se trata de ondas electromagnéticas. Es el tipo más penetrante de radiación. Al ser ondas electromagnéticas de longitud de onda corta, tienen mayor penetración y se necesitan capas muy gruesas de plomo u hormigón para detenerlas. En este tipo de radiación el núcleo no pierde su identidad, sino que se desprende de la energía que le sobra para pasar a otro estado de energía más baja emitiendo los rayos gamma, o sea fotones muy energéticos. Este tipo de emisión acompaña a las radiaciones alfa y beta. Por ser tan penetrante y tan energética, éste es el tipo más peligroso de radiación. 
La radiactividad se aprovecha para la obtención de energía nuclear, se usa en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades, entre otras).
La radiactividad puede ser:
·         Natural: manifestada por los isótopos que se encuentran en la naturaleza.
·   Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales.

Radiactividad Natural





En 1896 Henri Becquerel descubrió que ciertas sales de uranio emiten radiaciones espontáneamente, al observar que velaban las placas fotográficas envueltas en papel negro. Hizo ensayos con el mineral en caliente, en frío, pulverizado, disuelto en ácidos y la intensidad de la misteriosa radiación era siempre la misma. Por tanto, esta nueva propiedad de la materia, que recibió el nombre de radiactividad, no dependía de la forma física o química en la que se encontraban los átomos del cuerpo radiactivo, sino que era una propiedad que radicaba en el interior mismo del átomo.
     El matrimonio de Marie y Pierre Curie, quienes encontraron otras sustancias radiactivas:    el torio, el polonio y el radio. 
    Marie Curie dedujo que la radiactividad es una propiedad atómica. El fenómeno de la radiactividad se origina exclusivamente en el núcleo de los átomos radiactivos.
Con el uso del neutrón, partícula teorizada en 1920 por Ernest Rutherford, se consiguió describir la radiación beta.
En 1932James Chadwick descubrió la existencia del neutrón que Rutherford había predicho en 1920, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración son en realidad neutrones.
Radiactividad Artificial

La radiactividad artificial, también llamada radiactividad inducida, se produce cuando se bombardean ciertos núcleos estables con partículas apropiadas.
Fue descubierta por los esposos Jean Frédéric Joliot-Curie e Irène Joliot-Curie, bombardeando núcleos de boro y de aluminio con partículas alfa. Observaron que las sustancias bombardeadas emitían radiaciones (neutrones libres) después de retirar el cuerpo radiactivo emisor de las partículas de bombardeo.
El estudio de la radiactividad permitió un mayor conocimiento de la estructura del núcleo atómico y de las partículas subatómicas. Se abrió la posibilidad de convertir unos elementos en otros. Incluso se hizo realidad el ancestral sueño de los alquimistas de crear oro a partir de otros elementos, como por ejemplo átomos de mercurio, aunque en términos prácticos el proceso de convertir mercurio en oro no resulta rentable debido a que el proceso requiere demasiada energía.
El 15 de marzo de 1994, la Agencia Internacional de la Energía Atómica (AIEA) dio a conocer un nuevo símbolo de advertencia de radiactividad con validez internacional. La imagen fue probada en 11 países.
La radiactividad en Fukushima



FISIÓN NUCLEAR



La fisión nuclear es una de las dos reacciones posibles que se producen cuando trabajamos con energía nuclear.
En energía nuclear llamamos fisión nuclear a la división del núcleo de un átomo. El núcleo se convierte en diversos fragmentos con una masa casi igual a la mitad de la masa original más dos o tres neutrones.     

La suma de las masas de estos fragmentos es menor que la masa original. Esta 'falta' de masas (alrededor del 0,1 por ciento de la masa original) se ha convertido en energía según la ecuación de
Einstein (E=mc2). En esta ecuación E corresponde a la energía obtenida, m a la masa de la que hablamos y c es una constante, la de la velocidad de la luz: 299.792.458 m/s2. Con este valor de la constante c ya se puede ver que por poca unidad de masa que extraigamos en una fisión nuclear obtendremos grandes cantidades de energía (ver la definición de energía).
La fisión nuclear puede ocurrir cuando un núcleo de un átomo pesado captura un neutrón, o puede ocurrir espontáneamente.


Reacciones nucleares en Cadena
Una reacción en cadena se refiere a un proceso en el que los neutrones liberados en la fisión produce una fisión adicional en al menos un núcleo más. Este núcleo, a su vez produce neutrones, y el proceso se repite. El proceso puede ser controlado (energía nuclear) o incontrolada (armas nucleares).

Si en cada fisión provocada por un neutrón se liberan dos neutrones más, entonces el número de fisiones se duplica en cada generación. En este caso, en 10 generaciones hay 1.024 fisiones y en 80 generaciones aproximadamente 6 x 1023 fisiones.

Energía liberada por cada fisión nuclear
165 MeV ~ Energía cinética de los productos de fisión
7 MeV ~ Rayos gamma
6 MeV ~ Energía cinética de los neutrones
7 MeV ~ Energía a partir de productos de fisión
6 MeV ~ Rayos gama de productos de fisión
9 MeV ~ Anti-neutrinos de los productos de fisión
200 MeV
1 MeV (millones de electrón-voltios) = 1,609 x 10-13 Joules

Masa critica
Aunque en cada fisión nuclear  se producen entre dos y tres neutrones, no todos neutrones están disponibles para continuar con la reacción de fisión. Si las condiciones son tales que los neutrones se pierden a un ritmo más rápido de lo que se forman por la fisión, los que se produzcan en la reacción en cadena no será autosuficiente.
La masa crítica es el punto donde la reacción en cadena puede llegar a ser auto sostenible.
En una bomba atómica, por ejemplo, la masa de materias fisionables és mayor que la masa crítica.
La cantidad de masa crítica de un material fisionable depende de varios factores, la forma del material, su composición y densidad, y el nivel de pureza.








La fisión nuclear controlada
Para mantener un control sostenido de reacción nuclear, por cada 2 o 3 neutrones puestos en libertad, sólo a uno se le debe permitir dar a otro núcleo de uranio. Si esta relación es inferior a uno entonces la reacción va a morir, y si es más grande va a crecer sin control (una explosión atómica)
Algunos reactores utilizan grafito como moderador, pero este diseño tiene varios problemas. Una vez que los neutrones rápidos se han desacelerado, son más propensos a producir más fisiones nucleares o ser absorbidos por la barra de control.

¿Por qué se usa el uranio y el plutonio en la fisión nuclear?
Los científicos sabían que el isótopo más común, el uranio 238. Hay una probabilidad bastante alta de que un neutrón incidente sea capturado para formar uranio 239 en lugar de causar una fisión. Sin embargo, el uranio 235 tiene una probabilidad de fisión más alta.
Del uranio natural, sólo el 0,7% es de uranio 235. Esto significa que se necesita una gran cantidad de uranio para obtener la cantidad necesaria de uranio 235.
Además, el uranio 235 no se puede separar químicamente del uranio 238, ya que los isótopos son químicamente similares. Los métodos alternativos tuvieron que desarrollarse para separar los isótopos.
El plutonio 239 tiene una probabilidad alta de fisión. Sin embargo, el plutonio 239 no es un elemento natural y debería hacerse.
Se trata de los materiales más usados en las centrales de energía nuclear.

Fisión nuclear espontánea
La tasa de la fisión nuclear espontánea es la probabilidad por segundo que un átomo dado se fisione de forma espontánea - es decir, sin ninguna intervención externa. El plutonio 239 tiene una muy alta tasa de fisión espontánea en comparación con la tasa de fisión espontánea de uranio 235.

El descubrimiento de la fisión nuclear
El descubrimiento, a finales de 1938, de que un neutrón podía partir en dos el núcleo de un átomo, representó para los físicos una auténtica sorpresa. Ninguna teoría física había predicho la fisión nuclear, ni sus descubridores podían imaginar que terminaría por aplicarse a la bomba atómica y las centrales nucleares. Esta parte de la historia es incuestionable.
Más controvertido es a quién reconocerle ese avance decisivo. El descubrimiento de la fisión nuclear fue el resultado de cuatro años de investigación por la física Lise Meitner y los químicos Otto Hahn y Fritz Strassmann, en su laboratorio de Berlín. En 1938, Meitner, de ascendencia judía, huía de la Alemania nazi, con la policía en los talones. Poco después, Hahn y Strassmann anunciaban el descubrimiento. Apenas transcurridas escasas semanas, Meitner y Otto R. Frisch, físico y sobrino suyo, hicieron pública la explicación teórica correcta de la fisión. Pero el premio Nobel de química de 1944 se le concedió a Hahn en solitario.

Aplicación de la fisión nuclear




La bomba atómica
De la fórmula de Einstein E=mc2 es evidente que la cantidad de energía generada en la fisión nuclear es inmensa (esto se debe a que el factor c2, que es la velocidad de la luz al cuadrado, es muy grande).
Este hecho se ha querido explotar para la producción eficiente de energía. El problema más serio que presentan los generadores de electricidad a base de energía de fisión es que los fragmentos de fisión son altamente radiactivos. El material que resulta de un reactor nuclear es una fuente de contaminación ambiental que trae graves consecuencias para la vida cuando éste se sale de sus contenedores. En Estados Unidos existen ahora más de 30 mil toneladas de residuos radiactivos.
Desafortunadamente para la historia del ser humano en el planeta Tierra, una de las primeras aplicaciones que se le dio a la fisión nuclear fue para fines bélicos. A las 8:15 AM el día 6 de agosto de 1945 los Estados Unidos hicieron explotar la primera bomba atómica sobre la ciudad Japonesa de Hiroshima. Al instante murieron más de 90 mil personas, los daños ambientales, materiales y sicológicos aún se siguen sufriendo. Tres días más tarde una segunda bomba atómica fue lanzada sobre Nagasaki con un número de victimas comparable. La historia de la humanidad nunca será igual. Los gobiernos de Estados Unidos y Rusia tienen a su disposición 5.500 cabezas atómicas, suficiente para matar todos los seres humanos en el planeta Tierra en pocos minutos.

Reactor nuclear


Un reactor nuclear es una instalación capaz de iniciar, controlar y mantener las reacciones nucleares (generalmente de fisión) en cadena que se produzcan en el núcleo de esta instalación.
La composición del reactor nuclear está formada por el combustible, el refrigerante, los elementos de control, los materiales estructurales y, en el caso de que se trate de un reactor nuclear térmico, el moderador.
Los reactores nucleares se pueden clasificar como reactores térmicos y reactores rápidos.
Los reactores térmicos son aquellos que funcionan retrasando (moderando) los neutrones más rápidos o incrementando la proporción de átomos fisibles. Para ralentizar estos neutrones, llamados neutrones lentos, se necesita un moderador que puede ser agua ligera, agua pesada o grafito.
Los reactores rápidos son los que no necesitan moderar la velocidad de los electrones y utilizan neutrones rápidos.
Para construir un reactor nuclear es necesario disponer de combustible suficiente, que llamamos masa crítica. Tener suficiente masa crítica significa disponer de suficiente material fisible en óptimas condiciones para mantener una reacción en cadena.
La disposición de absorbentes de neutrones y de las barras de control permite controlar la reacción en cadena y la parada y puesta en funcionamiento del reactor nuclear.

En el núcleo del reactor se produce y mantiene la reacción nuclear en cadena con el objetivo de calentar el agua que se utilizará para accionar las turbinas de la central.





Ventajas y desventajas de la energía nuclear




Un tercio de la energía generada en Europa proviene de la energía nuclear, esto supone que se emiten 700 millones de toneladas de CO2 y otros contaminantes generados a partir de la quema de combustibles fósiles.
Actualmente se consumen más combustibles fósiles de los que se producen de modo que en un futuro no muy lejano se agotarían estos recursos. Una de las grandes ventajas del uso de la energía nuclear es la relación entre la cantidad de combustible utilizado y la energía obtenida. Esto se traduce, también, en un ahorro en transportes, residuos, etc.
Al ser una alternativa a los combustibles fósiles como el carbón o el petróleo, evitaríamos el problema del llamado calentamiento global, el cual, se cree que tiene una influencia más que importante con el cambio climático del planeta. Mejoraría la calidad del aire que respiramos con lo que ello implicaría en el descenso de enfermedades y calidad de vida.
Sobre éste último punto conviene destacar que lo que realmente tiene una influencia importante con el calentamiento global son las emisiones provocadas por el transporte por carretera y que las que generan la generación de energía por combustibles fósiles son relativamente muy pocas. Aún así, una de las aplicaciones de la energía nuclear (aunque muy poco utilizada) es convertirla en energía mecánica para el transporte.
Actualmente la generación de energía eléctrica se realiza mediante reacciones de fisión nuclear, pero si la fusión nuclear fuera practicable, ofrecería las siguientes ventajas:
·         Obtendríamos una fuente de combustible inagotable.
·         Evitaríamos accidentes en el reactor por las reacciones en cadena que se producen en las fisiones.
·         Los residuos generados son mucho menos radiactivos.

Desventajas de la energía nuclear

El principal inconveniente y lo que la hace más peligrosa es que seguridad en su uso recae sobre la responsabilidad de las personas. Decisiones irresponsables pueden provocar accidentes en las centrales nucleares pero, aún mucho peor, se puede utilizar con fines militares como se demuestra en la historia de la energía nuclear en que la primera vez que se utilizó la energía nuclear tras las oportunas investigaciones fue para atacar Japón en la Segunda Guerra Mundial con dos bombas nucleares.
A nivel civil, uno de los principales inconvenientes es la generación de residuos nucleares y la dificultad para gestionarlos ya que tardan muchísimos años en perder su radioactividad y peligrosidad.
Apenas incide favorablemente en el cambio climático porqué la principal fuente de emisiones es el transporte por carretera.
En los principales países de producción de energía nuclear para mantener constante el número de reactores operativos deberían construirse 80 nuevos reactores en los próximos diez años.
Si bien económicamente es rentable desde el punto de vista del combustible consumido respecto a la energía obtenida no lo es tanto si se analizan los costes de la construcción y puesta en marcha de una planta nuclear teniendo en cuenta que, por ejemplo en España, la vida útil de las plantas nucleares es de 40 años.
Inconvenientes de seguridad incrementados ahora con el terrorismo internacional. Además de la proliferación de energía nuclear que obligaría a recurrir al plutonio como combustible.
Aunque los sistemas de seguridad son muy avanzados, las reacciones nucleares por fisión generan unas reacciones en cadena que si los sistemas de control fallasen provocarían una explosión radiactiva.
Por otra parte, la energía nuclear de fusión es inviable debido a la dificultad para calentar el gas a temperaturas tan altas y para mantener un número suficiente de núcleos durante un tiempo suficiente para obtener una energía liberada superior a la necesaria para calentar y retener el gas resulta altamente costoso.

Accidentes nucleares
En la energía nuclear nos referimos a accidente nuclear a aquellos sucesos que emiten un determinado nivel de radiación susceptible de perjudicar a la salud pública.
Los accidentes nucleares se clasifican entre accidentes e incidentes nucleares según la gravedad. Y se incluyen tanto los accidentes nucleares como los accidentes radiactivos. Para entendernos, un accidente nuclear podría ser la avería en un reactor de una central nuclear y un accidente por radiación podría ser el vertido de una fuente de radiación a un río.
A pesar de los accidentes nucleares más conocidos se han producido en centrales nucleares también pueden suceder en otros centros en los que se trabaje con energía nuclear, como hospitales o laboratorios de investigación.
Para determinar la gravedad de un accidente se ha definido una Escala Internacional de Accidentes Nucleares (más conocida por sus siglas en ingles INES).
Debido el secretismo de los gobiernos y las empresas propietarias de las centrales nucleares es difícil determinar la gravedad o la extensión y repercusiones que un determinado accidente nuclear puede suponer. 

Escala INES internacional de sucesos nucleares y radiológicos
La escala INES es un instrumento que se utiliza en todo el mundo para comunicar al público información sistemática acerca de la importancia de los sucesos nucleares y radiológicos desde el punto de vista de la seguridad.
Así como sin las escalas Richter o Celsius no sería fácil entender la información sobre los terremotos o la temperatura, la escala INES indica la importancia de los sucesos derivados de una amplia gama de actividades, que abarcan el uso industrial y médico de fuentes de radiación, la explotación de instalaciones de energía nuclear y el transporte de materiales radiactivos.
Con arreglo a esta escala INES, los sucesos se clasifican en siete niveles. Los sucesos de los niveles 1 a 3 se denominan "incidentes", mientras que en el caso de los niveles 4 a 7 se habla de "accidentes". Cada ascenso de nivel en la escala indica que la gravedad de los sucesos es, aproximadamente, diez veces superior. Cuando los sucesos no revisten importancia desde el punto de vista de la seguridad se los denomina "desviaciones" y se clasifican "Debajo de la escala / Nivel 0".
7
Accidente nuclear grave
6
Accidente nuclear importante
5
Accidente nuclear con riesgo
fuera del emplazamiento
4
Accidente nuclear sin riesgo
fuera del emplazamiento
3
Incidente importante
2
Incidente
1
Anomalía

Entre los accidentes nucleares podemos mencionar a los siguientes:
Three Mile Island: 


Esta es una central nuclear de Estados Unidos en la que en el año 1979 tuvo lugar el peor accidente sufrido por un reactor nuclear en ese país. El núcleo del reactor sufrió una fusión parcial pero por el buen funcionamiento del edificio protector solo existió un mínimo escape radioactivo, que no causó grandes daños. De todos modos, la situación que se generó fue muy peligrosa y la opinión pública comenzó a afianzar su mirada negativa en este tipo de energía.
Luego de este accidente, las medidas de seguridad de las centrales nucleares y de sus alrededores aumentaron. Pero lamentablemente, un nuevo accidente nuclear aconteció.

Chernobyl: 
La central nuclear de Chernobyl, localizada en la antigua Unión Soviética, fue el escenario de uno de los peores accidentes nucleares. El accidente tuvo lugar el 26 de abril de 1986 y se produjo por unas explosiones en uno de los reactores nucleares. Estas explosiones largaron importantes cantidades de material radioactivo a la atmósfera que generaron radiación en las proximidades del lugar como en muchas zonas del Hemisferio Norte (principalmente afectó a países de la antigua URSS y a los del Noreste de Europa).


Este impresionante accidente expuso a muchas personas a la radiactividad, las cuales la manifestaron con graves daños e incluso varias personas murieron. El tema también pasa por que los problemas causados por el accidente son a medio y largo plazo. La contaminación no se elimina fácilmente y de hecho, algunas tierras agrícolas resultaron contaminadas por la radiactividad y producto de esta contaminación no podrán usarse por varias decenas de años.
Además, se observaron muchos más casos de leucemia y las personas aledañas al lugar del accidente debieron, y deben, someterse periódicamente a exámenes para controlar su salud.
El accidente de Chernobyl supuso un hecho gravísimo en la energía nuclear, el cual evidencio la falta de medidas de seguridad en algunas centrales nucleares y la poca preparación científica y técnica de algunos responsables de la misma. Esto se traduce en enormes peligros para millones de personas y para todo el medio ambiente en general.
Fukushima: 
Este accidente nuclear nos ocupa en la actualidad. El mismo se desencadenó luego de un gran desastre natural en Japón, nos referimos al terremoto seguido del tsunami. La magnitud de este desastre fue tal que causó graves daños a algunos reactores nucleares, los cuales explotaron y están contaminando con radiactividad. Incluso ya se han comenzado a observar aguas y alimentos con radiactividad, aunque los expertos manifestaron que esta radiactividad no supone “riesgos inminentes”, lo cual hay que tomar con pinzas, ya que los perjuicios en la salud humana pueden comenzar a manifestarse con el correr del tiempo.


Otras aplicaciones de la energía nuclear



Aunque la energía nuclear se utiliza principalmente para la producción de energía eléctrica en las centrales nucleares ésta no es la única utilidad de la energía nuclear.
Este tipo de energía aparece en muchos otros aspectos de nuestra vida cotidiana y en el campo científico.
La energía nuclear tiene otras aplicaciones en diversos campos:
  • Aplicaciones industriales: con fines de análisis y control de procesos.
  • Aplicaciones médicas: en diagnóstico y terapia de enfermedades.
  • Aplicaciones agroalimentarias: en la producción de nuevas especies, tratamientos de conservación de los alimentos, lucha contra las plagas de insectos y preparación de vacunas.
  • Aplicaciones medioambientales: en la determinación de cantidades significativas de sustancias contaminantes en el entorno natural.
  • Otras aplicaciones: como la datación, que emplea las propiedades de fijación del carbono-14 a los huesos, maderas o residuos orgánicos, determinando su edad cronológica, y los usos en Geofísica y Geoquímica, que aprovechan la existencia de materiales radiactivos naturales para la fijación de las fechas de los depósitos de rocas, carbón o petróleo.

FUSIÓN NUCLEAR




En física nuclear, Las reacciones de fusión nuclear son inversas a las de fisión. En una reacción de fusión, dos núcleos ligeros colisionan entre sí y se unen para formar otro más pesado, liberando simultáneamente una cierta cantidad de energía. La más sencilla de estas reacciones, es aquella en la que interaccionan los núcleos de dos isótopos del hidrógeno (el deuterio y el tritio) dando lugar a un núcleo de helio y un neutrón, además de energía. Tanto el deuterio como el tritio son isótopos radiactivos del hidrógeno.
Los elementos atómicos empleados normalmente en las reacciones fusión nuclear son el Hidrógeno y su isótopos: el Deuterio (D) y el Tritio (T).
·         El Deuterio es un isótopo estable del hidrógeno formado por un protón y un neutrón.
·         El Tritio, es el isótopo inestable o radiactivo del átomo de hidrógeno, está compuesto por un protón y dos neutrones y se desintegra por emisión beta con relativa rapidez.
·         Se denominan isótopos  a los átomos de un mismo elemento, cuyos núcleos tienen una cantidad diferente de neutrones, y por lo tanto, difieren en masa atómica.

Para que este tipo de reacciones tenga lugar se necesita un enorme aporte de energía que finalmente permita que los núcleos ligeros venzan la fuerza de repulsión que existe entre ellos (ambos están cargados positivamente). Debido a las altas temperaturas que se alcanzan en este proceso, los átomos se desprenden de los electrones y la materia pasa a un estado especial, denominado plasma, una especie de gas compuesto de electrones e iones. Debido a sus características, el plasma no puede ser confinado de ninguna manera excepto por medio de enormes campos magnéticos o potentísimos rayos láser. De cara a la obtención de electricidad, el mismo esquema de funcionamiento descrito antes para las centrales de fisión nuclear sería válido para una hipotética central nuclear basada en la fusión.
Hay que tomar en cuenta que no todas las reacciones de fusión producen la misma energía, depende siempre de los núcleos que se unen y de los productos de la reacción.
La fusión de dos núcleos de menor masa que la del hierro, libera energía en general. Por el contrario, la fusión de dos núcleos pesados que el hierro absorbe energía.
La fusión nuclear, está actualmente en líneas de investigación, debido a que todavía hoy no es un proceso viable, ya que se invierte más energía en el proceso para que se produzca la fusión, que la energía obtenida mediante este método.
La fusión, es un proceso natural en las estrellas, produciéndose reacciones nucleares por fusión debido a su elevadísima temperatura interior.
Las estrellas están compuestas principalmente por Hidrógeno y Helio. El hidrógeno, en condiciones normales de temperatura, se repele entre sí cuando intentas unirlo (fusionarlo) a otro átomo de hidrógeno, debido a su repulsión electrostática. Para vencer esta repulsión electrostática, el átomo de hidrógeno debe chocar violentamente contra otro átomo de hidrógeno, fusionándose, y dando lugar a Helio, que no es fusionable. La diferencia de masa entre productos y reactivos es mayor que en la fisión, liberándose así una gran cantidad de energía (muchísimo mayor que en la fisión). Estos choques violentos, se consiguen con una elevada temperatura, que hace aumentar la velocidad de los átomos.
La forma más típica de reacción de fusión nuclear es la conversión de dos núcleos de hidrógeno (uno de deuterio, o hidrógeno 2, y otro de tritio, o hidrógeno 3) en uno de helio, con emisión de un neutrón y una cantidad de energía muy elevada.
Para efectuar las reacciones de fusión nuclear, se deben cumplir los siguientes requisitos:
·        Temperatura muy elevada para separar los electrones del núcleo y que éste se aproxime a otro venciendo las fuerzas de repulsión electrostáticas. La masa gaseosa compuesta por electrones libres y átomos altamente ionizados se denomina PLASMA.
·        Confinamiento necesario para mantener el plasma a elevada temperatura durante un tiempo mínimo.
·      Densidad del plasma suficiente para que los núcleos estén cerca unos de otros y puedan lugar a reacciones de fusión.
Se encuentran en desarrollo dos métodos de confinamiento:
·         Fusión nuclear por confinamiento inercial (FCI): Consiste en crear un medio tan denso que las partículas no tengan casi ninguna posibilidad de escapar sin chocar entre sí. Una pequeña esfera compuesta por deuterio y tritio es impactada por un haz de láser, provocándose su implosión. Así, se hace cientos de veces más densa y explosiona bajo los efectos de la reacción de fusión nuclear.
Fusión nuclear por confinamiento magnético (FCM): Las partículas eléctricamente cargadas del plasma son atrapadas en un espacio reducido por la acción de un campo magnético.
Como anteriormente se mencionó, la fusión nuclear tiene lugar cuando dos núcleos de átomos ligeros se unen para formar otro núcleo más pesado, liberando una gran cantidad de energía.

Fusión Nuclear
La fusión nuclear es una reacción en la que se unen dos núcleos ligeros para formar uno más pesado. Este proceso desprende energía porque el peso del núcleo pesado es menor que la suma de los pesos de los núcleos más ligeros. Este defecto de masa se transforma en energía, se relaciona mediante la fórmula E=mc2 , aunque el defecto de masa es muy pequeño y la ganancia por átomo es muy pequeña, se ha de tener en cuenta que es una energía muy concentrada, en un gramo de materia hay millones de átomos, con lo que poca cantidad de combustible da mucha energía.
No todas las reacciones de fusión producen la misma energía, depende siempre de los núcleos que se unen y de los productos de la reacción. La reacción más fácil de conseguir el la del deuterio (un protón más un neutrón) y tritio (un protón y dos neutrones) para formar helio (dos neutrones y dos protones) y un neutrón, liberando una energía de 17,6 MeV.
La fusión de dos núcleos de menor masa que el hierro (en este elemento y en el níquel ocurre la mayor energía de enlace nuclear por nucleón) libera energía en general. Por el contrario, la fusión de núcleos más pesados que el hierro absorbe energía. En el proceso inverso, la fisión nuclear, estos fenómenos suceden en sentidos opuestos.

Es una fuente de energía prácticamente inagotable, ya que el deuterio se encuentra en el agua de mar y el tritio es fácil de producir a partir del neutrón que escapa de la reacción. 

Ventajas de la fusión



La fusión nuclear es un recurso energético potencial a gran escala, que puede ser muy útil para cubrir el esperado aumento de demanda de energía a nivel mundial, en el próximo siglo. Cuenta con grandes ventajas respecto a otros tipos de recursos:
Los combustibles primarios son baratos, abundantes, no radioactivos y repartidos geográficamente de manera uniforme (el agua de los lagos y los océanos contiene hidrógeno pesado suficiente para millones de años, al ritmo actual de consumo de energía).
Sistema intrínsecamente seguro: el reactor sólo contiene el combustible para los diez segundos siguientes de operación. Además el medio ambiente no sufre ninguna agresión: no hay contaminación atmosférica que provoque la "lluvia ácida" o el "efecto invernadero".
La radiactividad de la estructura del reactor, producida por los neutrones emitidos en las reacciones de fusión, puede ser minimizada escogiendo cuidadosamente los materiales, de baja activación. Por tanto, no es preciso almacenar los elementos del reactor durante centenares y millares de años.

La fusión nuclear es una reacción nuclear en la que dos núcleos de átomos ligeros, en general el hidrógeno y sus isótopos (deuterio y tritio), se unen para formar otro núcleo más pesado, liberando una gran cantidad de energía
Un ejemplo claro lo vemos a diario en la energía solar que tiene su origen en la fusión de núcleos de hidrógeno, generándose helio y liberándose una gran cantidad de energía que llega a la Tierra en forma de radiación electromagnética.



Para efectuar las reacciones de fusión nuclear, se deben cumplir los siguientes requisitos:
·     Temperatura muy elevada para separar los electrones del núcleo y que éste se aproxime a otro venciendo las fuerzas de repulsión electrostáticas. La masa gaseosa compuesta por electrones libres y átomos altamente ionizados se denomina PLASMA.
·        Confinamiento necesario para mantener el plasma a elevada temperatura durante un tiempo mínimo.
·         Densidad del plasma suficiente para que los núcleos estén cerca unos de otros y puedan lugar a reacciones de fusión.
Los confinamientos convencionales, como las paredes de una vasija, no son factibles debido a las altas temperaturas del plasma. Por este motivo, se encuentran en desarrollo dos métodos de confinamiento:
·     Fusión nuclear por confinamiento inercial (FCI): Consiste en crear un medio tan denso que las partículas no tengan casi ninguna posibilidad de escapar sin chocar entre sí. Una pequeña esfera compuesta por deuterio y tritio es impactada por un haz de láser, provocándose su implosión. Así, se hace cientos de veces más densa y explosiona bajo los efectos de la reacción de fusión nuclear.
·   Fusión nuclear por confinamiento magnético (FCM): Las partículas eléctricamente cargadas del plasma son atrapadas en un espacio reducido por la acción de un campo magnético. El dispositivo más desarrollado tiene forma toroidal y se denomina TOKAMAK.
La fusión nuclear tiene lugar cuando dos núcleos de átomos ligeros se unen para formar otro núcleo más pesado, liberando una gran cantidad de energía.
Los elementos atómicos empleados normalmente en las reacciones fusión nuclear son el Hidrógeno y sus isótopos: el Deuterio (D) y el Tritio (T). Las reacciones de fusión más importantes son:
D + T --> 4He + n + 17,6 MeV
D + D --> 3He + n + 3,2 MeV
D + D --> T + p + 4,03 MeV
n = neutrones
p = protones

Para que tengan lugar estas reacciones debe suministrarse a los núcleos la energía cinética necesaria para que se aproximen los núcleos reaccionantes, venciendo así las fuerzas de repulsión electrostáticas. Para ello se necesita calentar el gas hasta temperaturas muy elevadas (107 ó 108 ºC ), como las que se supone que tienen lugar en el centro de las estrellas.
El gas sobrecalentado a tan elevadas temperaturas, de modo que los átomos estarán altamente ionizados, recibe el nombre de plasma.
El requisito de cualquier reactor de fusión nuclear es confinar dicho plasma con la temperatura y densidad lo bastante elevadas y durante el tiempo justo, a fin de permitir que ocurran suficientes reacciones de fusión nuclear, evitando que escapen las partículas, para obtener una ganancia neta de energía. Esta ganancia energética depende de que la energía necesaria para calentar y confinar el plasma, sea menor que la energía liberada por las reacciones de fusión nuclear. En principio, por cada miligramo de deuterio-tritio se pueden obtener 335 MJ.
Es bien sabido que las tres cuartas parte del Planeta están cubiertas por agua, cuyas moléculas están formadas por dos átomos de hidrógeno y uno de oxígeno.
El Deuterio es un isótopo estable del hidrógeno formado por un protón y un neutrón. Su abundancia en el agua es de un átomo por cada 6.500 átomos de Hidrógeno, lo que significa que con el contenido de deuterio existente en el agua del mar (34 gramos por metro cúbico) es posible obtener una energía inagotable mediante la fusión nuclear, y cuyo contenido energético es tal que con la cantidad de deuterio existente en cada litro de agua de mar, la energía obtenida por la fusión nuclear de estos átomos de deuterio equivale a 250 litros de petróleo.



El otro elemento empleado en la fusión nuclear es el Tritio, es el isótopo inestable o radiactivo del átomo de hidrógeno. Está compuesto por un protón y dos neutrones y se desintegra por emisión beta con relativa rapidez, y aunque es escaso en la naturaleza, puede ser generado por reacciones de captura neutrónica con los isótopos del Litio, material abundante en la corteza terrestre y en el agua del mar.

La fusión nuclear, está actualmente en líneas de investigación, debido a que todavía hoy no es un proceso viable, ya que se invierte más energía en el proceso para que se produzca la fusión, que la energía obtenida mediante este método.
La fusión, es un proceso natural en las estrellas, produciéndose reacciones nucleares por fusión debido a su elevadísima temperatura interior.

Las estrellas están compuestas principalmente por Hidrógeno y Helio. El hidrógeno, en condiciones normales de temperatura, se repele entre sí cuando intentas unirlo (fusionarlo) a otro átomo de hidrógeno, debido a su repulsión electrostática. Para vencer esta repulsión electrostática, el átomo de hidrógeno debe chocar violentamente contra otro átomo de hidrógeno, fusionándose, y dando lugar a Helio, que no es funcionadle. La diferencia de masa entre productos y reactivos es mayor que en la fisión, liberándose así una gran cantidad de energía (muchísimo mayor que en la fisión). Estos choques violentos, se consiguen con una elevada temperatura, que hace aumentar la velocidad de los átomos.
La forma más típica de reacción de fusión nuclear es la conversión de dos núcleos de hidrógeno (uno de deuterio, o hidrógeno 2, y otro de tritio, o hidrógeno 3) en uno de helio, con emisión de un neutrón y una cantidad de energía muy elevada.


Las principales diferencias y características de ambos procesos son:
- Mientras que el proceso de fisión nuclear es conocido y puede controlarse considerablemente bien, la fusión plantea el inconveniente de su confinamiento, que hace que se siga investigando, aunque ya se estén produciendo grandes avances gracias al ITER.
- La reacción de fusión genera del orden de 4 veces más energía que la fisión.
- La reacción nuclear de fusión no contamina tanto como la de fisión, eliminado el peligro de los residuos radioactivos.
- La fisión necesita como materia prima, una materia prima de difícil producción, como es el Uranio enriquecido.

Experimento de Fusión


Experimento con pilas